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I
I_this paper, the effect of nonldeal square-law detection on static calibration ii

for a class, of Dicks radiometers is examined. It is shown that f_rth-order curva- i
,. turs in the detection characteristic adds a nonlinear term to the linear calibration

relationship normally ascribed to noise-lnjection, balanced Dicke radiometers. The '

minimum error, based on an optimum straight-line fit to the calibration curve, is

derived in terms of the power series coefficients describing the input-output ¢harao- i

terlstic of the detector. These coefficients can be determined by simple measure-

;_. : ments, and detection nonlinearity is, therefore, quantitatively related to radio-

metric measurement error, i

i _'_ ' INTRODUCTION i

!_-: A microwave radiometer is a receiver specifically designed to measure microwave-

[_T.w- radiated power P and thereby determine the radiometrio brightness temperature Tb,

i_i _ defined by

_::_" T b P (11kB
• °

_: where k is Boltzmann's constant, and B is the bandwidth. Radiometers have been
implemented in a variety of configurations (ref. I) and are still in an evolutionary

phase in which both theoretical and hardware innovations are being incorporated.

_' This work concerns an error-producing mechanism in pulsed-nolse, balanced Dicks

_ radiometers and is a theoretical examination of the measurement error resulting from• nonideal square-law detection in such a system.

• The square-law detector (S.L.D.) is present in all noise-injection radiometers
_ and can be realized in many forms utilizing a variety of nonlinear elements, In this

_i.i analysis, the S.L.D. was modeled as a memoryless, nonlinear "black box'_,having an

_ Input-output relationship given by

__ V 0 - k_Vin + k2Vin + k_V n n

" where VO and Vin are the detector output and input random-holes voltages, respec-

_i.i! tively, and k I represent, the coefflcients in the power series. This investigation
• was limited to the important case where the S.L.D. is very nearly square-law because

of the values of the coefflcien_ _n eqUatlon [2) and a restriction on IVin I. An

_/: earlier investigation of _his subject (ref. 2) was part of a broader discussion of a

_i_ particular radiometer and was highly condensed and less general than this analysis.
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SYMBOLS

• B bandwidth

' Px I0:_ dBR _ 10 lOglo T
li r _ I

, E{ } expected value operator i
¢

/if:.' _....... _clt_man_.'sconstant

ii k2 coefEicient oZ..second-order term..in..power series relatln_...V o and Pin i[>

ii:: k4 . coefficientoffo.rth-ordsrterminpowereeriesrelatingVo _d Pin !• %

[[ k{ coefficient of first-cider term in power series relating Vo and Vin i

I,_ k_ uoefficient of second-order term in power series relating Vo and Viu !

!i_, " k_ coefficient of third-order term in power series relating Vo and Vin

k_ coefficient of fourth-order term In .power series relating Vo and Vin

_: L loss factor

_. N number of decades on logarithmic scale

_. P power

<
: Pa antenna (input) power

e. _Pa error associated with straight-llne approximation to Pa(8)
A

_ _a approximation to Pa
!I

_-i, Pal optimum linear approximation to Pa(_) }

! Pin detector input power, radiometer mode

Pn injected-noise source power ..

_ Pr reference power at deteotor-input

Ps system hOleS power at detector input

'_ Px detector input power, slnusoldal excitation
}.) R detector Input resistance "

_: T Dic_s-cycle period

r, Ta I

antenna.llnput) temperaturb

_$"_'/ _Ta2 tempelature error correepondlng.to -AP a il' 1984008394-TSA05



I
T n injected-nolse source .temperature

T r roference termination temperature

T s system equivalent input noise temperature

[ t time

V a antenna (input) _andom-nolse voltage

i

Vin detector (input) random-noise voltage
i
_i Vn injected random-nolse voltage

P V o detector output random-noise voltage

_ V r reference-noise voltage

7+
I+ Vs system noise voltage

i*- Vol detector output during first interval of Dicke cycle

VO2 detector output during Second interval of Dicke cycle

I_ Vo3 detector output durin_ third interval of Dicke cycle

_'_ Vor value of Vox designated as "reference level"

Vox value of detector output voltage, slnusoldal input

I V x magnitude of sinusoidal test signal

i z logarithmic transfo_matlon of Vox, referenced to Vor

l+
_, AZ deviation from straight line

: e ratio of k4 to k2

Injected-noise duty cycle

i ^
_O value of _ for which Pa = 0

"_' _I normalized departure from linearlty, reference-nolse excitation

62 normalized departure from linearity, slnusoidal excitation

¢i power-balance error on the ith Dicks cycle

oa standard dev:atlon of antenna noise voltage

o n standard dev.'.a_ion of Injected-nolse voltage

i. 0s standard deviation of system noise voltage
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Abbreviations, ORIGtNAtpAGElg
F,S, full scale OF POOR _..

J

/: max maximum ....
{

min minimum

{ S.L.D. ..... square-law detector

:_ : Mathematical notation_

i-- _ =." vary nearly equal to

"" _ THEORY ,,

_ ! Null-Balance Static-Error Derivation

.'_ ." In this section, an expression is derived to relate the input (antenna) power

_. and the pulsed-nolse duty cycle in a pulsed noise-injection, balanced Dicke radiom-eter, which is shown in simplified form in figure 1. The system is a closed-loop,
'_"?: hulling servomechanism, which adds noise to the antenna _noise such that their sum

power, as measured over the antenna half-Dicke cycle, equals the power measured over
the reference half-Dicks cycle. This analysis deals specifically with the case of a

---_ single noise pulse per Dicks cycle; however, the results are applicable to a pulse-

_:,'_ rate modulation format. Furthermore, the target is assumed fixed, such that the

_%_,, input noise process can be considered as stationary and ergodic.

_. Detector waveforms typifying the radiometer model of figurê I in an equilibrium

_,' state are shown in figure 2. The system is designed to force _i' the finlte-time
_ average value of a sequence of random variables, to approach zero. The random vari-
--..,_
_ able ¢i is defined as follows:

TC." (i-I )T+T/2 iT

!----_": £i A 2 It) dt 2 V (t) dr.. (31

-] This is accomplished by the error-hulling natur_ of the servomechanism, which drives
: "_ "I /k

_m,_"..I the duty cycle of the injected noise 8 to be that value necessary to make Ei
! approach zero. EqUation (3) can be rewritten so that. each integral is restrloted to
_-_ _ a time interval in which the detector input consists of only one combination of the

_-_ i four relevant noise procesaes_ input noise Va(t), injected noise Vn(t), system
, : .- noise Ve(t) , and reference noise Vr(t). Tfius,

:--i ]

• 2 2

£i = _ (i-lIT Vo1(t) dt +2 Vo2(t) dt- vo3lt) dt ,' _ (i-I)T+ST/2 _ i-I/2)T
-- (4)

•_ _ .... . . .... -- .......... _,......... _,_i....

-- - 1984008394-TSA07
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L ' where the-subscripts on Vo(t) distlnguish the three distinct intervals of a Dicke

cycle, as depicted in figllre-(2). To the extent that the servo system drives _i

to zero and, as previously stated, the input noise pro_esses, a_e all sCationary such

t_at time and ensemble averages can be in_er.changed, the "power-balance condition"

_ requires that

i
, E(_!---0 (s_

i Applying this constraint to e q_LP2L_I_4) and integrating yields

I': ' __{v°l(t_} + (1 - _ _{Vo2(t)}- E{Vo3(t)}- o (6_
_'- During the first time interval, the detector input consists of the sum of the

_- antenna noise, injected noise, and system noise, and the first term of equation (6)

;',;!,_ ' may be written as i

I_ _ E{V01 } - _3 E{k_(V a + Vn + VS) + k_(V a + V + VS )2

_::. +1<._(v+v +v )3+l<_(va+v �v)4}_--i:: a ......n s n s (7) ;

i following equation (2). The random processes Va, Vn, and Vs are assumed to be
_ Gaussian, zero-mean, and statistically independent. Further reduction of equa-

7= tion (7) is based on the application of

._ , {4}_-L°[ • 3 • 5 • ...(j - , ,: (for(forJJevenC/odd,_ (_'9

_:_ from reference 3, and the fact that E{Dq} = E{p_ * E(q} if p and q are indepen-

=-115:'i dent random variables. _¢pandlng equation (7) and applying these results leads to
L....

_._ + 6k_.0202 + 6kto202 + 6k!o202) (9)
;. _ _ a n 4 a s _ n s ......

[:_ TnlS can be expressed as

. ! h

r;

- �6k4PP �6kP P + 6k4PnP_s" (107-; an 4as
%

• _ 1984008394-TSA08



I ORIGINAL-PAGE19OF_OOR.QUAUTY 't

sln_e k_ Ak2/R and.k_ _-_-4/R2, w_e R is the _p_t r_s_tan_ o_ t_edeteoto_.
The applIo_tlon of similar arguments to the remainlng two-ea_ected-value opera_ion. _ . .
yields

i

[" k 2 2
i_ E(Vo3} = k2P r + k_s + 3 4Pr + 3k4Pe + 6k4PrPs (12) _,

i and the power-balance equation (aq. 14)) can be written as }

i !

. I

' 2 3k4P2 6k4PrPs_.. - k2P r - k2P s - 3k4P - - = 0 (13) 'i

[" i Upon normalizing by k2 and defining _ = k4/k2, equation (13) reduces to i

.... 3_ "+ (I + 60_Pn + 60_)P a + 13_ + 3oqB +-6aLBPnPs
%

- P - 3_P2 - 6_P P = 0 (14)
r r r e

T_.isquadratic equation in Pa defines the relationship betWeen Pa and _
resulting from the "power-balance" condition. In a perfect square-law detector, G

_'I equals zero and equation (I4) simplifies to a linear relationship betWeen Pa

_ I ana....(_

The major question to be answered by this paper is_ What error %n measuring Pa

results when a linear relationship between Pa and _ is assumed, as in equa-
tion (15), when in faut_ u is actually nonzero, albeit vezT small, and eo.ua-

i! tlon (14) more accurately applies ,5o the situation? _le is not a trivial ques-

': tion, as the usual assumption in the radiometry field is that the detector is
ideal, and therefore, a linear calibration relationship is Justified (refo I,

_ ' p. 402). ''

A representatio_ for Pa(_) is sought which explicitly expresses any nonlinear- i

i Ity between Pa and _ when • is nonzero. The most direct approach to obtaining

-- 1984008394-TSA09



" ,T/1
ORIGINALPAg
OFPOORQUALITY

_ch _ expre_ion for Pa(_) is to-solve equa_on (14) for _ w_h _e unde_-
s_ndln_ _a_ _e solution _ll _ a function of _. Applicatxon of _e quadratic

formula to equation (14) ylelds (see appendix.A) ...................................

=.

Pa = (I.,_ 6a_P n _6_PS) + (I +-6_ r + 6aP s) + (16)

. i (.I + 6aP r 6aPz) _
I

. which., is an exact solution only if _ e_Is zero _ unity, in wh_h_ cases the radi-

_._ caL reduces _ _ity,. and eq_tion (16) yield_ exactly _e S_e value for Pa as.

_i_ equ&tlon (15). The range of _ is dependen_ on _e value of _. Fo_ == 0, _e
_,- range of B is

._.'_'_. ' 0 • _ • Pr/Pn_ (for P _ P _ 0) (17)

A simplified form of e_ation (I6) _at is good for all v&lues, within the rangeof _ can be obtained by appro_mation. Since _ has been restricted to ve_ small

_: values, it is justifiable to approximate equation (16) as

g
//!

; Pa =_ I + 6_BP n + + (I + 6_P r + + - (18)

_. i (I + 6aP r + 6_P s)

'_' which simplifies to
T.

+ n g2

Pa = Pr " _ n + I �6_Pr + 6UP s I +. 6uP �6_P(19) .

_. r e

-. Equation (19) eho_ that the fourth-order tem in equation (2) has resulted in

_:-: a slope change relative _ _e ideal situation wh_e _ = 0 given by _uation (15).
_- _is_an _-acoo_odated in _e oallhration pro_esa_ however_ nonzero values of a

'-' also produced a nonlinear _2 _rm _ich-cannot _ rem_ed
by a straight-llne

' calibratlon.

,. 8_e feeling for _e _yslcal slgniflcance of _ese results can _ ob_ained by

examining the behavior of equ_ion (19) for three ranges of Pn _ Pn < Pr, Pn " Pr*

and Pn > P_' _th c either zero or nonzero. The first _ee_ Pn < Pr, h_ limited
practical importance _ radiometr_, _t it is included here for c_mpleteness.

1984008394-TSA10
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Figure 3 shows Pa versus _ fo_ the above-mentloned condltlons._ _he following
- points should be noted_

'i_ 1. The linear (_ - 0) and nonlinear (_ > 0 and u < 0) curves-intersect at
, _ = 0----and 8 = I. (See eq. (18)o)

il 2, The practical range-of _ i_ bounded by zero and the lessor of approximately

i . Pr/Pn or I, since- Pa cannot be negative, and 8 cannot exceed unity.

',. 3. In the practical operating region where > increasingly
Pn positive

values of _ make 80, the value of _ for which Pa = 0, increasinglyi'!: lss,than-P Pn,.andi,cr singlyneqativevalues.

[[!ii Increasing_,y_greater, than Pr/Pn.. (See eq. (C7).)

4o Increasing u increases the-spread between the linear and nonlinear cases.

!! ^• Now that an expression is available which-explicitly expresses Pa as a func-

ii,_ tion of 8, it is possible to determine the error arisin_ from a straight--line cali_
bration. The "best" stralght-line fit will be defined as that which results in the

smallest peak error between itself and equation (19) over the region from 8 = 0

to _ = _o, which corresponds to a Pa range of PT to zero. _his optir_um linear

fit to ..Pa(_)....is_.designated as Pal, and the quadratic error function

^

is to be minimized in the sense stated above, It is shown in appendix B that this i

optimum linear fit to Pc(8) results in a peak value for AP a that is one-eig_th
of the value attained by the 82 term in equation (19) when _ attains its maxi-

mum value of 80, at which point "_a equals zero, It is necessary to determine 8o
in order to evaluate AP a, This is accomplished in appendix C by solving for the

root of equation (19), which is shown in equation (C7) to be

• _I 3e(Pn " Pr)_3aPn + -_! Be" - 1' + 6ctP. J

t

The minimum Value of hP a as described above and in appendix B can now be evaluaaed

using equations (tP), (B14), and (C7), and is

6C_r3_p2 6UPs) I 3Q(Pn3_Pn-Pr) 72hPa,peaklmin-_ 8(I + + " I + �6_PI (21)
--.j

which essentially equals 3ap2/8 when the degree of nonlinearity is sligh£. This
is the principal result of this sectlon and establishes a lower bound on the radio-

metric measurement error unused by nonzero Values of ao It should be emphasized '_

that the actual error based on the usual '_two-point" calibration technique will
. almost certainly exceed this minimum Value.

: f!
8
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Deteotoc-.Nonl_neartty Characterization

Evaluation of squadron (21) =equire_ a knowledge of P= and =1 Pr is a known
or eas£1y measured parameter. _his section discusses two methods for determining a.

_ The first _thed is an "in-clrcult" method., aultable for usa with an exteting radiom-
, start the second method is based on sinusoldal-excitation,

In the in-clrcult method# the Dicks switch is "locked" in the reference mode,

and a calibrated step _ttenuator of loss factor L is placed _t the input of the

i' detecto_. The input-output oharacterlstlc is then. determined by using the tandem
:i. signals V r + Vs as excitation. The average value of the de_ector output voltage

ie given by equation (12) as

3k4L2(p r
)2 (22)Ii vo3 " k2Ll + Pc)+ + Pe

!-
,!
I In. flg_e 4, Vo3 is. plotted as a function ef the input power L(P r + Ps). The

ii nermalized departure from-linearlty is defined as the ratio of the deviation of Vo3

i!_..._ from the linear term k2L(P r + Ps)[L=1.__to the linear term, and can be expressed as

i AVe3 3k4(Pr + Ps - 3a(P r + Ps) (23)

_il-i 61 ._ k;(p r + P9) = k2(P r + Ps )

_' from which u is found to be

01
a = (24)

3(e + P )
r s

Thus, u can be defined using the measured quantity 61 and the known or easily

; measured total input power in the reference mode.

F Determination of _ usitlg a sinusoidal input signa I follows the same general

i procedure. The mean output voltage of the detector, described by equation (21,
when driven by Vin = Vx sin (0t (_ is t_e radian frequency), can be found to be

i I

= -- + _ 1251
; ox 2 8

:!i:_ which can be written in terms of powe_,, since R_ _ k2/R , k_ _ k4/R2 , and

! ' Px" v2/TMThus,

3k4P2x

i. , - = k2P x + (26)J,. Vex

I' 1

1

1984008394-TSA12
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from which the normalized-departure grom llnsarlty (s_e fig_-_ oan be wrltten, as

, 3kZ3=,x j
•' 62 = _ = _ (27_

and _ found to he
l

,- 262

= =.._ (281
r

!'2.

It is now possible to numerically evaluate APa_ as given by equation 121),

for some typical radiometer parameter values. Suppose, for example, that

• T r = T s = 308 K, that equation (28) is evaluated at a sinusoldal power level of

_'- _x = Ps + Pr, and that 62 is 0.01, which approaches the limits of analog observ-
--_ i ability. Then, from the approximation to equation (21), ,'

A,a,pe l  L3( r�= o.oo12%mina 3 2(0.01 _2 (29)

--_-_. The _Ta associated with this APa is, from equations (I) and (29),

!_ ATalmi n = 0.00125Tr - 0.385 K (30)

_'" and it is clear that the detector must be extremely true square-law if radiometric

_--_!_ errors of less than I K are demanded and a lineax relationship between Pa and

--r_ i is assumed. Alternately, since the effect is predictable, it could be included by
L

m-_',., i using a nonlinear calibration relationship such as equation (1_), This approach
._ _ becomes more attractive if the pessibility exists that other nonideal aspects of the ,

_:_ : system hardware could produce nonlinearity between Pa and _. Admitting the pres-

_'_ _ enos of a _2 term in Pa(_) could significantly improve calib_atlon accuracy.

As a final consideration, the censequences of following the ueu_l laboratory i

_ _ procedure of loga_ithmioally plotting the data used to define _ (ref. 4) will b6-

- examined. The resulting compression of the observed variable-signifleantly masks

_m_,!_ nonlinearity. To show this, equation (26) iswritten such that the reference islog
when p _ p , or

=-:. the value of _ox X r

-.• % k2_x + (,>x/,>r)[1+
I

- Vor k2P r -I, (3/21k4P 1 + 13c¢Pr/21 (311 '_ .

10 _1

1984008394-TSA13
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Taking 10 lo_10 ef both side8 of eqqatton (31) yields

,0lOg,oh+,olOg,o, lOg,o,+. z _ 10 log10 - =
,_ V r

or

{ or

(,;_ z =, dBR - 10 lOglotl .+ "E--" ";" 1,0 lOglo + _ (33)

< which is sketched In-flgure 6. Now, the coefficient ratio _ is evaluated in Rerms
,. of the transforme_ variable z0 Prom figure 6, the normalized deviation from a

' straight line at full scale (F.S.) As

4 _ -_ 3_pr k
!i=_= I &Z A 10 log1011 + (3¢Px/2)] 1

_. < F°S----_ = 10N Px=Pr = _ log10_1 + --_----) (34)

when N is the number of decades on the vertical scale. Writing a two-term

' Maclaurinls series approximation for the right-hand side of equation (34) in

_" terms of _Pr yields

Az 3 log10 e 3_ r

<_ F.S. "__ uPr = 2N in 10 (35)

=_ ! For comparison purposes, consider the same data plotted on a linear scale. When

r_._'_; ' Px = Pr, the normalized deviation frc i a straight line was shown to be

_. _2-= --3--- (36),

!_ Comparison of equations (35) and (36) reveals that loqarithmic has
plotting reduced

< the observable deviation from a straight line by the factor N in 10, In other

_+" words, the radiometer error associated with a given AZ/F.So has increased by the

factor N in 10. For the example cited caviler, based on a 62 of 0°01, the AT a
-:_ of 0.385 K would increase to 2.66 KI Thus, logarithmic plotting should be avoided

!_i'. when attempting to define _°

i_ .
r
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_.:__ CONCLUSZORS

The r-sult_ of the examination oE the effect of nonldeal square-law _otection on

the statlo eallbratlon of nolse-lnJection, balanced Dicks radiometers may b_ sumaa-
rIzed _ fnllows=

i!

: I. Fourth-order curvature i_ the square-law detector was shown-.to produce a

nonlinear relationship between the pulsed duty Qyole _ and the measured

antenna temperature.

2. The mln/mum peak-measurement error with respect to an optimum straight-line

• ._. ': fit was related to a ratio oF- ooeffloients in a power serle.q describing the
input-output Qharaoterist_c of the square-law detector.

i _ 3o The ooefflcient, ratio was shown to be obtainable from simple laboratory

. measurements.
_"

_" 4 _.The minimum c_libration nonlinee.rity resulting from square-law detection

which deviates from ideal by only I p_r_en__.wassho_m_Cn_J0e on the order of.

• • 0.5 K. ;,

_?.,- /

find the coefficient ratio was assessed and shown to be significant.

Langley Research Center

"" National Aeronautics and Space Administra£ion

Hampton, VA 23665

Nove_be.r 23, 1983

t"

i i-il
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--. IL" J
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iii_: DERZ_ATION OP NORLINEAR CALIBRATION EQUATZON----_

i Thia.appendix includes the steps followed in the deriva_.ion of equation (1%},
!" for whlch the quadratCc solution roots are, by inspection,

•_ Pa -.._ -(1--+ 6_]P n + _ (I + + s + 12_6Pn�12aPs
L-

J

!" +"72a2gPnPs- 12_BPn - 36_2_p2n -.72_2¢pnp s + 12_Pr
+ 36<x2p2 + 72¢2PrPs)l/2 ] (A1)

li:i.-.. After simplification and regrouping, equation (At' maybe writ¢en as

_ 36a2 (Pr_' Pa " -(I + 6_P n + 6{IP ) + [I + 12_(P + p ) + + p )2_ s r e s

36 2 2]'/2t;; + 6(6 - I)P (A2)

• and simplified to

Pa=_ .(1 + 6_p + 6_Ps) + (1 + 6_Pr + 6_Ps) + (_ +s_Pr'+6_Ps)2!

Beoause of the stipulated smallness of _ (corresponding to only slight devia-

tion from true square-law in the deteotor), the term in brackets is approximated by

!_ the first two terms Of a Maclaurin'e series to yield

, =-- (1 + + 6rap ) ± (1 + (A3)

Pa 6_ s 6_Ps)2..
' ' ( 1 + 6uP

,/_. ^
_,_ Only the positive squats root is significant and produces realistia values for Pa"

i: Thus, equation (A3) simplifies to

ii:i ^ (1 + 3.P n6.Pr+6,Q.Pr+6.ps6C_P,s// 6_pr3_P2n6"Ps _2 (A4)
Pa " Pc " _Pn ' I + + I + ! + +

which is equation {19) in the text in a slightly different form,

1984008394-TSB02
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An approximation differing only slightly from equation (A4) c&n be obtained by

writing a Maclaurln's series for equation (14) with the coefficients obtained by

implicitly differentiating equaJ:ion (14) and evaluating the derivatives at _ - 0_

• This procedure yields an approximation for Pa that dlffcrs from equation (A4) only
f' in the coefficient of the _2 term, which-ls

3up211" + 3_P + 6uP + 6_P )(I - 3aP P 6uP + 6uP s)
I d2Pa n n r s n r (A5)

4_

21 d82 I 1 + 6o¢P + 6sP ,IB=O r sI

i,

I: and which can be expressed as

9=0 r s r s

,,&.' to emphasize the extreme closeness of the two approximations.

2' 1 ";

1

[1." t

?-

_'i

Ii ,
!i:_•
i-

!_. t4
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DETERMINATION OF BEST STRAIGHT-LINE F_T TO A QUADRATTC FUNCTION
ON A FIN_T_ INTERVAL I

For a quadratic equation

2
_ . y - ax--+ bx + c (B1)

the--conditions are.derived that cause the linear approximation te y,

.......... i ........_ to be the best fit to equation (El) in the sense that

gi
_" is minimized over the interval from zero to Xm. The quadratic equation

_-_ Ay = y - YL = ax2 + (b - A)x + (c - B) (B4)can have a maximu_ of two real roots for which Ay = 0. Thus# over the interval from

_ zero to Xm, the roots are positioned so that

_.i ay(o) = _z(xm) ° -ay(xo) _B._)

as shown in the sketch below, ............................

_c' Ay 0 _ Xm '--,x

:_ IThis development could be presented in terms of Tehehychev polynomials by
_-- _ making a suitable change of variables.

_" 15
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Applying the first set of equalities in eqBatlon (BS) to equation (B4) yields

2 ,!
c - B-=-ax�(b - A)x �c- B (B6)

m m !

I" !
which reduces to

A = b + ax (B7}
!,, m

L_

_ and defines the elope of ¥L"!
In ordeE to find the intercept of YL' it is necessary to first find Xo, the

[i". flex point over.-the interval from zero to .Xmo From equation (B4), the derivative

•..,., _ Ay = 2ax + (b - A) (_1

_.

_ must-equal zero at xo. Thus r

A- b
= -- (B91

Xo 2a

" j

,_ Combining this with the result stated in equation (B7) yields !

} ,
xm

i_ x = _ (mo)
o 2

__ Thus, the value of Ay at xo is

_.

i-C

_, whichByieldsbYspecification of equation (B51 ,mustequal -y(0), or -(o - B), Solving for )

_ m

i:: B - e - 8 (B121

"_ 11• T

16
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The minimum _ak deviation from s straight l_ne defined by equation (B2) can be foun_

by evaluating equation (E4) at either zero, xo, or Xm, Evaluatiog at zero yields
L

AYml_ 'IAyCOIJ.o-B
(_13)

Combining this with equation (B12) gives the desired result,

i_ ax 2
m

Ym _A in 8

. (B14)

i-

i?

'i.
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DETERMINATION OF 130

Ir_ this appendix, the value of g for which Pa, equation (19), is zero is..

determined. Equation (19) is first put in standard quadratic form,

• 1 + 6aP + 6aP

!i_'__ _2o " I + 3uP n +3aPn6aPx+-6aP_)8 ° + 3_P2r _Pr - 0 (CI)

and the quadratic formula applied to_yield

! _ + 3uP + 6uP + 6uP I + 3_P + 6uP + 6upa n r s n r

_ _ 3_Pn n

_-==- i . r 6aPs) i

,_. ,._.! 12 1C21

L____ : Removing common factors and expanding gives

: I + 3uP + 6uP + 6uP

_. = n r s 1 1 . +
, -. n n

_-_-_-" + 6uP + 12uP + 12uP + 36a2PnPr n s r s r
• -'_ + 36a2p P + 72a2p P - 12UP :

. 72u2p2r . 72a2PrPs) I/2

• (c3) i

_ which can be simplified and written as I

_- 1 + 3uP + 6uP r + 6uP i

" " _ 8o = n 6aPn s * 6_ [(1 + 3aP n + 6_Ps)2 + 36a2PrlP n - Pr)] 1/2 (C4) '

" I
_:2:. This can be put in a form suitable for approximating by removing the large fac£or :

from the term in brackets; thus,

. I + 3aP n + 6aP r + 6_P. :_ I + 3uPn6=p + 6=Ps_ + 36a2PrCPn " pr) ]1/2 (C5) i:;'-" e° eaPn n 2j I_.. 11 + 3aP n + 6_P s)
i

: . 18 I
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Taking the negative square root and approximating the term in brackets as the first

i tWO terms of a Maolaurints series gives

_'_,.. + 3aP r + 6_P s

i: _o " Pn_,.+ 3aP n �6aPs;(C6)

i_ which is the desired result, This can be written as

Pr 3_(Pn - Pr )

Be -- '- I + 3_ n "__p;J (c7)

to emphasize the fact that for small values of _, _o differs only slightly from
Pr/Pn,

Ii
i

!& I
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i" i

o-

i-V-a(t)+ V_(t) + V (t)! . . . i
t:- | \ • . s _Vr(t) + Vs(t)-7 i

IVo(t)-+V.(t)7)

DETECTOR _

"_'" INPUT, Vin(t )
_. TIME _

i_ t I ,

i: Vol(t) _ i
_ DETECTOR Vo2(t) iI ------Vo3(t) _

OUTPUT, _ I
, t
t "i

: 0 T/2 T

1
Figure 2,-- Input and output waveforms at detector for full blcke cycle. 1

t
Y

.!

1

!
1

i
_ 22 1

1984008394-TSB11



ORIGINALPAGE19
OF POORQUALITY

T: v= _""
° |

23 ._

1984008394-TS B12



, t- /'

I_= ORIGINALPAGEt3
• OF POORQUALITY

+ } k2Pin �3k4P1n2"_/fA'%3

....... 1//
; -- I Voo,max

! _'k2Pln

Vo3

i :
-- 0.5V-3uim_x

[ =-.

_'. 0 0.5(Pr+Ps) (Pr+Ps)

, . Pin

_ ; FigUre 4.- Graphical determination of nonlinearityi =i

!; coefficient using reference-noise excitation,-2---.-

_'_:' 3k4Px2 1 A7 ;'

_.., VOx

=.__ O.ff_o

= I

i_":':"• O O'_Pr _Jr i"

_--"; _ PX

i-

i Pigure 5.- Graphioal determination ef nonlinearityi coefEia£ent uelng sinueoidal exoitatlon.
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